

EN **Product Information**

> **Elan-tech®** EC 157.1/W 152 LR

100:30

2-components thermal-resistance epoxy system for infusion

ELANTAS EUROPE Sales offices:

Strada Antolini n°1 loc. Lemignano 43044 Collecchio (PR) Italy Tel +39 0521 304777 Fax +39 0521 804410

Grossmannstr. 105 20539 Hamburg Germany Tel +49 40 78946 0 Fax +49 40 78946 349

info.elantas.europe@altana.com www.elantas.com

	Resin EC 157.1	Hardener W 152 LR	Mixing ratio by weight 100:30
Application:	High performance composite parts of mediu	um size.	
Processing:	 Manual mixing. Mechanical mixing. Me Impregnation by infusion or under vacuu temperature curing. W 152.1 HR: High reactivity for small com Sheet of EC 157.1/W 152.1 HR). W 152 MR: Medium reactivity for medium 152 MR). W 152 LR: Medium-slow reactivity for medium W 152 MLR: Medium-slow. Medium and la 152 MLR). W 152 XLR: Long pot life. Large size component 	um infusion (SCRIMP) of g ponents or as accelerator for -small size components (see um-large size components. arge size components (see	glass, carbon, kevlar fabrics. Room other hardeners (see Technical Data Technical Data Sheet of EC 157.1/W Fechnical Data Sheet of EC 157.1/W
Description:	Two components epoxy system. Low viscos post-curing at moderate temperature (50-60 The system is RoHS compliant (Europear (RoHS 2) entered into force on 21 July 20 their respective national laws by 2 January	0°C) allows to obtain high per a directive 2002/95/EC) and 011 and requires Member St	formances. the new RoHS Directive 2011/65/EU

SYSTEM SPECIFICATIONS

Resin Viscosity at: 25°C IO-10-50 (ISO3219) mPas 500 700 Hardener Viscosity at: 25°C IO-10-50 (ISO3219) mPas 20 40

TYPICAL SYSTEM CHARACTERISTICS

Processing Data							
Colour resin			Colourless				
Colour hardener			Pale/yellov				
Mixing ratio by weight	for 100 g resin	g	100:30				
Mixing ratio by volume	for 100 ml resin	ml	100:37				
Density 25°C Resin	IO-10-51 (ASTM D 1475)	g/ml	1,13	1,17			
Density 25°C Hardener	IO-10-51 (ASTM D 1475)	g/ml	0,93	0,97			
Pot life 25°C (50mm;200ml)	IO-10-53 (*)	min	100	120			
Exothermic peak 25°C (50mm;200ml)	IO-10-53 (*)	°C	180	195			
Initial mixture viscosity at: 25°C	IO-10-50 (ISO3219)	mPas	150	250			
Gelation time 25°C (1mm)	IO-10-88 (ASTM D5895-03)	h	10	12			
Demoulding time 25°C (15ml;6mm)	(*)	h	24	32			

PRODUCT INFORMATION

pag.2/4

C ELANTAS

EC 157.1/W 152 LR

TYPICAL CURED SYSTEM PROPERTIES

Properties determined on specimens cured: 24 h RT + 15 h 60°C

Colour Machinability			Pale yellow Excellent		
Density 25°C		IO-10-54 (ASTM D 792)	g/ml	1,08	1,12
Hardness 25°C		IO-10-58 (ASTM D 2240)	Shore D/15	84	88
Glass transition (Tg)	7gg TA/RT	IO-10-69 (ASTM D 3418)	°C	55	61
	24hRT+15h 50°C		°C	70	76
	24hRT+15h 60°C		°C	79	85
			°C		
Maximum Tg		IO-10-69 (ASTM D 3418)	°C	94	100
Water absorption (24h R	Т)	IO-10-70 (ASTM D 570)	%	0,10	0,20
Water absorption (2h 10	D°C)	IO-10-70 (ASTM D 570)	%	0,60	0,70
Max recommended operating temperature		(***)	°C	9	0
Flexural strength		IO-10-66 (ASTM D 790)	MN/m²	110	120
Maximum strain		IO-10-66 (ASTM D 790)	%	5,0	7,0
Strain at break		IO-10-66 (ASTM D 790)	%	6,0	8,0
Flexural elastic modulus		IO-10-66 (ASTM D 790)	MN/m²	3.200	3.600
Tensile strength		IO-10-63 (ASTM D 638)	MN/m²	67	75
Elongation at break		IO-10-63 (ASTM D 638)	%	6,0	8,0
Compressive strength		IO-10-72 (ASTM D 695)	IO-10-72 (ASTM D 695) MN/m ²		

IO-00-00 = ELANTAS Europe's test method. The corresponding international method is indicated whenever possible.

nd = not determined na = not applicable RT = TA = laboratory room temperature (23±2°C)

Conversion units: 1 mPas = 1 cPs 1MN/m2 = 10 kg/cm2 = 1 MPa

(*) for larger quantities pot life is shorter and exothermic peak increases

(**) the brackets mean optionality (***) The maximum operating temperature is given on the basis of laboratory information available being it function of the curing conditions used and of the type of coupled materials. For further possible information see post-curing paragraph.

pag.3/4

EC 157.1/W 152 LR

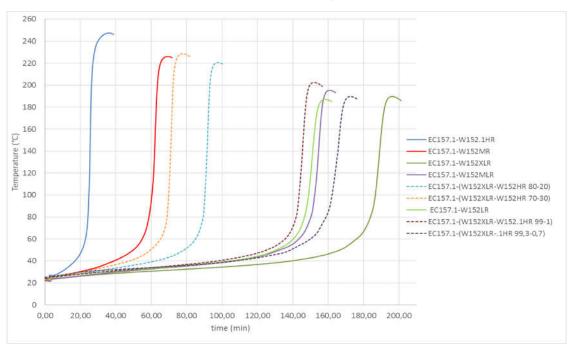
- **Instructions:** Before use verify if components are perfectly transparent. Add the appropriate quantity of hardener to the resin, mix carefully. Avoid air trapping. If the mixing is carried on with dosing/mixing equipment deharation of the mixture is not necessary. On the contrary evaluate if it is necessary as function of vacuum applied during infusion.
- **Curing/Post-curing**Post curing is always advisable for RT curing systems in order to stabilize the component and to reach the best properties. It is necessary when the component works at a high temperature. The rate of heating and the indicated post-curing time are referred to standard specimen size. Users should evaluate the best conditions of curing or post-curing depending on the component size and shape. For large size components decrease the thermal gradient and increase the post-curing time. In case of thin layer applications and composites, post cure on the jig. As general guide to minimize the risk of thermal deformations we suggest to carry on the post-curing in the following way:
 - on mould: 24 h RT + 6 h 40°C + 6 h 50°C +12 h 60°C
 - out of the mould but on the jig: 7 days RT + 6 h 40°C + 6 h 50°C + 12 h 60°C
- **Storage:** Unfilled epoxy resin and its amine based hardener can be stored for two years in the original sealed containers stored in a cool, dry place. The hardeners are moisture sensitive therefore it is good practice to close the container immediately after each use. The hardeners are moisture sensitive therefore it is good practice to close the container immediately after each use.
- HandlingRefer to the safety data sheet and comply with regulations relating to industrial health and wasteprecautions:disposal.

emission date: revision n° 00

May

2017

The information given in this publication is based on the present state of our technical knowledge but buyers and users should make their own assessments of our products under their own application conditions.

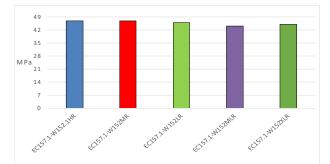

pag.4/4

EC 157.1/W 152 LR

Reactivity profiles of the systems during mass reactions

(200ml system volume, resin/hardener mixing ratio 100:30 at 25°C in air)

With HR label is identified the high reactivity hardener W152.1HR, generally suitable for small dimensions repairing or as reactivity modifier for other hardeners. The mixture of W152XLR with W152.1HR in different ratios allows to obtain intermediate reactivities. The systems are approved by DNV GL.


Processing times for the correct use of systems in vacuum infusion technology

	EC157.1-W152.1HR				EC157.1-W152MR				EC157.1-W152LR				EC157.1-W152MLR				EC157.1-W152XLR			
Application Temperature (°C)	15	20	25	30	15	20	25	30	15	20	25	30	15	20	25	30	15	20	25	30
Gelation Time (h)	6-8	NA	3-4	NA	12-16	NA	6-8	n.d.	16-22	NA	10-12	NA	16-22	NA	9-11	NA.	22-30	NA	13-16	NA
Minimum time before releasing the vacuum (h)	9	6	5	3,5	18	12	9	8	24	18	15	12	24	18	14	12	40	26	20	16
Demolding time (h)	12	8	6,5	5	24	18	15	12	44	36	30	24	42	36	30	24	110	60	42	30

N.B. The reported values are derived from lab tests and from the application experience. They must be considered indicative because they are related to the specific size and shape of the composite manufactures. Buyers and users should make their own assessments of our products under their own application conditions.

Interlaminar shear strength (ILSS) of laminates

(Unidirectional glass 600g/m² realized with infusion technology) -ASTM D2344

The composite laminates has been obtained by infusion of a $600g/m^2$ glass E tissue. From laminating of 5 mm of thickness cured at room temperature and stabilized at 50°C for 16 hrs were obtained specimens following ASTM D2344 code.