

EN Product Information

Elan-tech ® EC 130LV/W 342 100:30 by weight

ELANTAS EUROPE Sales offices:

Strada Antolini n°1 loc. Lemignano 43044 Collecchio (PR) Italy Tel +39 0521 304777 Fax +39 0521 804410

Grossmannstr. 105 20539 Hamburg Germany Tel +49 40 78946 0 Fax +49 40 78946 349

info.elantas.europe@altana.com www.elantas.com

Resin Hardener Mixing ratio by weight **EC 130LV** W 342 100:30

Applications: High performance composite parts of small and medium size. Structural parts for boats, model

aircrafts, racing vehicles, sport components.

Processing: Under vacuum impregnation, manual at atmospheric pressure and under vacuum bag for wood,

glass, carbon or kevlar fiber tissue. Room temperature or moderate temperature curing.

Description: Un-filled epoxy system. The system EC 130LV/W 342 allows the obtainment of a good surface

finish. Very good resistance towards UV. Good thermal resistance. The post-curing at a moderate

temperature is suggested to obtain the best performance for the system.

SYSTEM SPECIFICATIONS

Viscosity at:	25°C	IO-10-50	mPas	1.200	1.600
Hardener					
Viscosity at:	25°C	IO-10-50	mPas	30	70
	TYPICAL SYSTE	EM CHARACTERISTICS			
Processing Data					
Mixing ratio by weight		for 100 g resin	g	100:30	
Mixing ratio by volume		for 100 ml resin	ml	100:37	
Resin Colour				Violet	
Hardener Colour				Colourless	
Density at: 25°C Resin		IO-10-51 (ASTM D 1475)	g/ml	1,14	1,16
Density at: 25°C Hardener		IO-10-51 (ASTM D 1475)	g/ml	0,94	0,96
Pot life	25°C (40mm;100ml)	IO-10-53 (*)	min	22	27
Exothermic peak	25°C (40mm;100ml)	IO-10-53 (*)	°C	185	195
Initial mixture viscosity at: 25°C		IO-10-50 (EN13702-2)	mPas	500	800
Gelation time	25°C (15ml;6mm)	IO-10-73 (*)	h	2	3
Demoulding time	25°C (15ml;6mm)	(*)	h	12	17
Post-curing	60°C	(**)	h	15	
Maximum recomme	nded thickness		mm	5	

EC 130LV/W 342

TYPICAL CURED SYSTEM PROPERTIES

Properties determined on specimens cured: 24 h TA + 15 h 60°C

Colour Machinability				Violet Excellent	
Hardness		IO-10-58 (ASTM D 2240)	Shore D/15	88	90
Glass transition (Tg)		IO-10-69 (ASTM D 3418)	°C	88	93
Maximum Tg	(8 h 100°C)	IO-10-69 (ASTM D 3418)	°C	112	118
Flexural strength		IO-10-66 (ASTM D 790)	MN/m²	130	140
Maximum strain		IO-10-66 (ASTM D 790)	%	5,8	6,2
Strain at break		IO-10-66 (ASTM D 790)	%	6,8	7,2
Flexural elastic modulus		IO-10-66 (ASTM D 790)	MN/m²	3.200	3.600
Tensile strength		IO-10-63 (ASTM D 638)	MN/m²	70	75
Elongation at break		IO-10-63 (ASTM D 638)	%	3,6	4,0
Compressive strength		IO-10-72 (ASTM D 695)	MN/m²	104	108

IO-00-00 = Elantas Italia's test method. The correspondent international method is indicated whenever possible.

Conversion units: 1 mPas = 1 cPs 1MN/m2 = 10 kg/cm2 = 1 MPa

^(*) for larger quantities pot life is shorter and exothermic peak increases

^(**) the brackets mean optionality

^(***) The maximum operating temperature is given on the basis of laboratory information available being it function of the curing conditions used and of the type of coupled materials. For further possible information see post-curing paragraph.

EC 130LV/W 342

Instructions: Add the appropriate quantity of hardener to the resin, mix carefully. Avoid air trapping. For the

surface preparation (mould or model) refer to the release agents data sheet.

Curing Post-curing:

Post curing is always advisable for RT curing systems in order to stabilize the component and to reach the best properties. It is necessary when the component works at a high temperature. Post cure the tool as stated in the table, increasing gradually 10°C/hour. The rate of heating and the indicated post-curing time are referred to standard specimen size. Users should evaluate the best conditions of curing or post-curing depending on the component size and shape. For big size components decrease the thermal gradient and increase the post-curing time; in the case of thin

layer applications and composites post cure on the jig.

Storage: Epoxy resins and their hardeners can be stored for two years in the original sealed containers

stored in a cool, dry place. The hardeners are moisture sensitive therefore it is good practice to

close the vessel immediately after each use.

Handling precautions:

Refer to the data sheet and comply with regulations relating to industrial health and waste

disposal.

emission date: March 2004/R&S revision n° 03 August 2007/R&S

The information given in this publication is based on the present state of our technical knowledge but buyers and users should make their own assessments of our products under their own application conditions.