

EN

Technical Data Sheet

Elan-tech[®]
EC 131 LV/W 152 LR

100:30

2K Unfilled epoxy system

ELANTAS Europe Sales offices:

Collecchio (PR) 43044 - Italy Strada Antolini n° 1 loc. Lemignano Tel +39 0521 304777 Fax +39 0521 804410

Hamburg 20539 - Germany Großmannstrasse. 105 Tel +49 40 78946 0 Fax +49 40 78946 349

info.elantas.europe@altana.com www.elantas.com/europe

Product description

- 2K unfilled epoxy system
- Slow curing hardener
- Possible combination with different reactivity hardeners
- Good fibers wettability
- High thermal resistance

Areas of application

Wet lay up or infusion of glass, carbon or kevlar fibers and fabrics. High performance composite parts. Available for medium size structure and thickness such as shipyard components, automotive and sport elements. Can be used as coupling layer of cores if additioned with hollow microsphere or tixo agents.

Processing methods

Hand of machine mixing. Application by brush or roll brush. Can be used with vacuum bag technology. Moderate temperature curing.

Curing/Post-curing

Post-curing is always advisable for Room Temperature curing system in order to stabilize the component and/or to reach the best properties. It is necessary when the component works at high temperature. Recommended post curing ramp-up: 10°C/hour. Cool it down slowly. The rate of heating and the indicated post-curing time are referred to laboratory specimen size. Users should evaluate the best conditions of curing or post-curing depending on the component size and shape. For big size components it is advisable to decrease the thermal gradient and increase the post-curing time.

Storage and stability

Unfilled epoxy resin and its amine based hardener can be stored for two years in the original sealed containers stored in a cool, dry place. The hardener is moisture sensitive, therefore it is good practice to close the container immediately after each use.

Handling precautions

Refer to the safety data sheet and comply with regulations relating to industrial health and waste disposal.

03/2022

Sales specifications

EC 131 LV

Properties	Conditions	Test Method	Value	M/U	
Viscosity	25 °C	IO-10-50 (ISO 3219)	1000 ÷ 1600	mPa∙s	

W 152 LR

Properties	Conditions	Test Method	Value	M/U
Viscosity	25 °C	IO-10-50 (ISO 3219)	20 ÷ 40	mPa∙s

Typical product properties

EC 131 LV

Properties	Conditions	Test Method	Value	M/U
Colour			Violet	
Viscosity	25 °C	IO-10-50 (ISO 3219)	1000 ÷ 1600	mPa∙s
Density	25 °C	IO-10-51 (ASTM D 1475)	1,10 ÷ 1,15	g/ml

W 152 LR

Properties	Conditions	Test Method	Value	M/U
Colour			Pale yellow	
Viscosity	25 ℃	IO-10-50 (ISO 3219)	20 ÷ 40	mPa∙s
Density	25 ℃	IO-10-51 (ASTM D 1475)	0,93 ÷ 0,97	g/ml

Typical system properties

Properties	Conditions	Test Method	Value	M/U
Mix Ratio by weight			100 : 30	g
Mix Ratio by volume			100 : 36	ml
Initial mixture viscosity	25 ℃	IO-10-50 (ISO 3219)	300 ÷ 500	mPa∙s
Exothermic peak	25 °C - 50 mm - 200 ml	IO-10-53 (*)	120 ÷ 135	°C
Pot life	25 °C - 50 mm - 200 ml	IO-10-53 (*)	2 ÷ 3	hrs
Gel time	25 °C - 1 mm	IO-10-88 (ASTM D 5895-03)	15 ÷ 17	hrs

Typical cured system properties

Properties	Conditions	Test Method	Value	M/U
Specimens curing cycle			24 h RT + 15 h 60 °C	
Density (solid)	25 ℃	IO-10-54 (ASTM D 792)	1,12 ÷ 1,16	g/ml
Hardness	25 °C	IO-10-58 (ASTM D 2240)	80 ÷ 85	Shore D/15
	24 h RT + 16 h 40 °C	60 ÷ 67 60 ÷ 67 IO-10-69 (ASTM D 3418) 75 ÷ 80 80 ÷ 85	60 ÷ 67	°C
	24 h RT + 16 h 50 °C		°C	
Glass Transition (Tg)	24 h RT + 15 h 60 °C		75 ÷ 80	°C
	24 h RT + 15 h 70 °C		80 ÷ 85	°C
	5 h 80 ℃		75 ÷ 82	°C
Maximum Tg	24 h RT + 15 h 80 °C	IO-10-69 (ASTM D 3418)	80 ÷ 86	°C
Water absorption (24 h RT)		IO-10-70 (ASTM D 570)	0,10 ÷ 0,20	%
Water absorption (2 h 100 °C)		IO-10-70 (ASTM D 570)	0,95 ÷ 1,15	%
Heat deflection temperature (HDT)		ISO 75	65 ÷ 70	°C

Typical mechanical properties in cured condition

Properties	Conditions	Test Method	Value	M/U
Specimens curing cycle			24 h RT + 15 h 60 °C	
Flexural strength	25 ℃	IO-10-66 (ASTM D 790)	100 ÷ 120	MN/m²
Strain at maximum stress	25 ℃	IO-10-66 (ASTM D 790)	4,5 ÷ 6,5	%
Strain at break	25 ℃	IO-10-66 (ASTM D 790)	5,5 ÷ 8,5	%
Flexural elastic modulus	25 ℃	IO-10-66 (ASTM D 790)	2800 ÷ 3500	MN/m²
Tensile strength	25 ℃	IO-10-63 (ASTM D 638)	70 ÷ 85	MN/m²
Tensile elastic modulus	25 ℃	IO-10-63 (ASTM D 638)	3000 ÷ 4500	MN/m²
Elongation at break	25 ℃	IO-10-63 (ASTM D 638)	3,5 ÷ 5,5	%
Compressive strength	25 ℃	IO-10-72 (ASTM D 695)	80 ÷ 100	MN/m²

IO-00-00 = Elantas Europe internal test method. The correspondent international method is indicated whenever possible; nd = not determined; na = not applicable; RT = TA = laboratory room temperature (23±2°C); conversion units: 1 mPas = 1 cPs 1MN/m2 = 10 kg/cm2 = 1 MPa

(*) for larger quantities pot life is shorter and exothermic peak increases; (**) the brackets mean optionality; (***) the maximum operating temperature is given on the basis of laboratory information available being it function of the curing conditions used and of the type of coupled materials. For further possible information see post-curing paragraph.

Product of ELANTAS Europe. Our advice given verbally or in writing is based on the present state of our technical knowledge, but is intended as information given without obligation, also with respect to any protective rights held by third parties. It does not relieve your own responsibility to check the products for their suitability to the purposes and processes intended and in accordance with the technical sheets of the products. The application usage and processing of the product are beyond our control and will completely fall into the scope of responsibility of buyers and users. Should there nevertheless be a case of liability from our side, this will be limited to any damage equivalent to the value of the merchandise delivered by us. Naturally, we assume responsibility for the unobjectionable quality of our products, as defined in our general terms and condition. Product conformity is guaranteed by properties defined in sales specification. Typical properties do not constitute part of the agreed product property or sales specification. Deviation from typical properties does not constitute non-conformity of the product. Typical properties are provided for general information purpose and as a guideline for the choice of the product; they are subject to variation related to i.e. curing cycles, specimen preparation, batch to batch variability, etc. unless specifically agreed with customers.

