
Product Information EN

Elan-tech ® EC 327/WH 842/W 847 100:125:1

ELANTAS EUROPE Sales offices: Strada Antolini nº1 loc. Lemignano 43044 Collecchio (PR) Italy Tel +39 0521 304777 Fax +39 0521 804410

Grossmannstr. 105 20539 Hamburg Germany Tel +49 40 78946 0 Fax +49 40 78946 349

info.elantas.europe@altana.com www.elantas.com

PRELIMINARY PRODUCT INFORMATION

Resin	Hardener	Catalyst	Mixing ratio by weight
EC 327	WH 842	W 847	100:125:1
Application:	Impregnation of glass fibres, kevlar, composite materials. Epoxy binding a	hot curing fiber reinforced con agent for handworks thermal re	nposites for manufacturing of sistant until 260°C.
Processing:	Pultrusion. Impregnation. Filament wir	nding. Hot curing.	
Description:	Two component unfilled epoxy s characteristics. The amount of catalys of required reactivity and working cycl	system. High thermal resist st can be changed between 0,2 e.	ance. Very good electrical and 4% by weight as function

TYPICAL SYSTEM CHARACTERISTICS

Resin					
Resin Colour				Pale yellow	
Viscosity	25°C	IO-10-50 (EN13702-2)	mPas	100	600
Density	25°C	IO-10-51 (ASTM D 1475)	g/ml	1,15	1,19
Hardener					
Hardener Colour				Pale y	/ellow
Viscosity a	t: 25°C	IO-10-50 (EN13702-2)	mPas	150	300
Density	25°C	IO-10-51 (ASTM D 1475)	g/ml	1,20	1,24
Catalyst					
Catalyst colour				Amber	
Viscosity	25°C	IO-10-50 (EN13702-2)	mPas	1	2
Density	25°C	IO-10-51 (ASTM D 1475)	g/ml	1,03	1,05
Processing	g Data				
Mixing ratio by weight		for 100 g resin	g	100:125:1	
Mixing ratio by volume		for 100 ml resin	ml	100:120:1	
Pot life at:	80°C (100 mPas)	IO-10-50 (EN13702-2) (*)	min	80	100
Initial mixture viscosity at:	re viscosity at: 25°C	IO-10-50 (EN13702-2)	mPas	300	400
	40°C		mPas	100	130
	60°C		mPas	35	50
	80°C		mPas	15	20
Gelation time	ne 100°C (with 1% of W847)	IO-10-52b (UNI 8701)	min	55	65
	100°C (with 3% of W847)	10-10-320 (010 8701)	min	26	32
Suggested	curing cycles	(**) 21	h 130°C + 4h 10	60°C + 4h	180°C + 4h 200

EC 327/WH 842/W 847

TYPICAL CURED SYSTEM PROPERTIES

Properties determined on specimens cured: 2h 130°C + 4h 160°C + 4h 180°C + 4h 200°C + 4h 250°C

Surface		Bright		
Density 25°C	IO-10-54 (ASTM D 792)	g/ml	1,21	1,25
Hardness 25°C	IO-10-58 (ASTM D 2240)	Shore D/15	90	92
Glass transition (Tg)	IO-10-69 (ASTM D 3418)	°C	250	260

IO-00-00 = Elantas Italia's test method. The correspondent international method is indicated whenever possible. nd = not determined na = not applicable RT = TA = laboratory room temperature (23±2°C)

1 mPas = 1 cPs 1MN/m2 = 10 kg/cm2 = 1 MPa Conversion units:

(*) for larger quantities pot life is shorter and exothermic peak increases

(**) the brackets mean optionality (***) The maximum operatin The maximum operating temperature is given on the basis of laboratory information available being it function of the curing conditions used and of the type of coupled materials. For further possible information see post-curing paragraph.

PRELIMINARY PRODUCT INFORMATION

pag.3/3

EC 327/WH 842/W 847

Instructions:	Add the appropriate quantity of hardener to the resin, mix carefully. Avoid air trapping. For some applications it can be useful to pre-heat the components and/or carry out a de-aeration step under vacuum of the mixture before casting.			
Curing / Post- curing:	For hot curing systems it is advisabl verifiyng the correctness for the corr higher than 10°C/hour must be avoid	e to follow the indication ponents under developm ed.	s reported in the pres ient. In both cases the	ent data sheet rmal gradients
Storage:	Epoxy resins can be stored for a year andthe anhydride based hardeners for six months if the containers are well sealed and are kept under cool and dry conditions. The hardeners are moisture sensitive therefore it is good practice to close the vessel immediately after each use. Epoxy resins may crystallize at low temperatures. To restore the original conditions, heat the material at 70-80°C avoiding local overheating. Before use, the product must be rehomogenized and cooled down at room temperature.			
Handling precautions:	Refer to the safety data sheet and comply with regulations relating to industrial health and waste disposal.			
		emission date: revision n° 02	May January	2010 2011

The information given in this publication is based on the present state of our technical knowledge but buyers and users should make their own assessments of our products under their own application conditions.